Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352392

RESUMO

Introduction: The voltage gated potassium ion channel K V 11.1 plays a critical role in cardiac repolarization. Genetic variants that render Kv11.1 dysfunctional cause Long QT Syndrome (LQTS), which is associated with fatal arrhythmias. Approximately 90% of LQTS-associated variants cause intracellular protein transport (trafficking) dysfunction, which can be rescued by pharmacological chaperones like E-4031. Protein folding and trafficking decisions are regulated by chaperones, protein quality control factors, and trafficking machinery, comprising the cellular proteostasis network. Here, we test whether trafficking dysfunction is associated with alterations in the proteostasis network of pathogenic Kv11.1 variants, and whether pharmacological chaperones can normalize the proteostasis network of responsive variants. Methods: We used affinity-purification coupled with tandem mass tag-based quantitative mass spectrometry to assess protein interaction changes in human embryonic kidney (HEK293) cells expressing wild-type (WT) K V 11.1 or trafficking-deficient channel variants in the presence or absence of E-4031. Resultsa: We identified 573 core K V 11.1 protein interactors. Both variants K V 11.1-G601S and K V 11.1-G601S-G965* had significantly increased interactions with proteins responsible for folding, trafficking, and degradation compared to WT. We found that proteasomal degradation is a key component for K V 11.1 degradation and that the K V 11.1-G601S-G965* variant was more responsive to E-4031 treatment. This suggests a role in the C-terminal domain and the ER retention motif of K V 11.1 in regulating trafficking. Conclusion: Our report characterizes the proteostasis network of K V 11.1, two trafficking deficient K V 11.1 variants, and variants treated with a pharmacological chaperone. The identified protein interactions could be targeted therapeutically to improve K V 11.1 trafficking and treat Long QT Syndrome.

2.
Hypertension ; 81(3): 516-529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37675576

RESUMO

BACKGROUND: The mechanisms by which salt increases blood pressure in people with salt sensitivity remain unclear. Our previous studies found that high sodium enters antigen-presenting cells (APCs) via the epithelial sodium channel and leads to the production of isolevuglandins and hypertension. In the current mechanistic clinical study, we hypothesized that epithelial sodium channel-dependent isolevuglandin-adduct formation in APCs is regulated by epoxyeicosatrienoic acids (EETs) and leads to salt-sensitive hypertension in humans. METHODS: Salt sensitivity was assessed in 19 hypertensive subjects using an inpatient salt loading and depletion protocol. Isolevuglandin-adduct accumulation in APCs was analyzed using flow cytometry. Gene expression in APCs was analyzed using cellular indexing of transcriptomes and epitopes by sequencing analysis of blood mononuclear cells. Plasma and urine EETs were measured using liquid chromatography-mass spectrometry. RESULTS: Baseline isolevuglandin+ APCs correlated with higher salt-sensitivity index. Isolevuglandin+ APCs significantly decreased from salt loading to depletion with an increasing salt-sensitivity index. We observed that human APCs express the epithelial sodium channel δ subunit, SGK1 (salt-sensing kinase serum/glucocorticoid kinase 1), and cytochrome P450 2S1. We found a direct correlation between baseline urinary 14,15 EET and salt-sensitivity index, whereas changes in urinary 14,15 EET negatively correlated with isolevuglandin+ monocytes from salt loading to depletion. Coincubation with 14,15 EET inhibited high-salt-induced increase in isolevuglandin+ APC. CONCLUSIONS: Isolevuglandin formation in APCs responds to acute changes in salt intake in salt-sensitive but not salt-resistant people with hypertension, and this may be regulated by renal 14,15 EET. Baseline levels of isolevuglandin+ APCs or urinary 14,15 EET may provide diagnostic tools for salt sensitivity without a protocol of salt loading.


Assuntos
Hipertensão , Lipídeos , Cloreto de Sódio na Dieta , Humanos , Cloreto de Sódio na Dieta/metabolismo , Canais Epiteliais de Sódio/metabolismo , Cloreto de Sódio/metabolismo , Eicosanoides , Pressão Sanguínea/fisiologia
3.
Mol Pharmacol ; 101(4): 236-245, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35125346

RESUMO

Loss-of-function (LOF) variants in the KV11.1 potassium channel cause long QT syndrome (LQTS). Most variants disrupt intracellular channel transport (trafficking) to the cell membrane. Since some channel inhibitors improve trafficking of KV11.1 variants, a high-throughput screening (HTS) assay to detect trafficking enhancement would be valuable to the identification of drug candidates. The thallium (Tl+) flux assay technique, widely used for drug screening, was optimized using human embryonic kidney (HEK-293) cells expressing a trafficking-deficient KV11.1 variant in 384-well plates. Assay quality was assessed using Z prime (Z') scores comparing vehicle to E-4031, a drug that increases KV11.1 membrane trafficking. The optimized assay was validated by immunoblot, electrophysiology experiments, and a pilot drug screen. The combination of: 1) truncating the trafficking-deficient variant KV11.1-G601S (KV11.1-G601S-G965*X) with the addition of 2) KV11.1 channel activator (VU0405601) and 3) cesium (Cs+) to the Tl+ flux assay buffer resulted in an outstanding Z' of 0.83. To validate the optimized trafficking assay, we carried out a pilot screen that identified three drugs (ibutilide, azaperone, and azelastine) that increase KV11.1 trafficking. The new assay exhibited 100% sensitivity and specificity. Immunoblot and voltage-clamp experiments confirmed that all three drugs identified by the new assay improved membrane trafficking of two additional LQTS KV11.1 variants. We report two new ways to increase target-specific activity in trafficking assays-genetic modification and channel activation-that yielded a novel HTS assay for identifying drugs that improve membrane expression of pathogenic KV11.1 variants. SIGNIFICANCE STATEMENT: This manuscript reports the development of a high-throughput assay (thallium flux) to identify drugs that can increase function in KV11.1 variants that are trafficking-deficient. Two key aspects that improved the resolving power of the assay and could be transferable to other ion channel trafficking-related assays include genetic modification and channel activation.


Assuntos
Ensaios de Triagem em Larga Escala , Síndrome do QT Longo , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Células HEK293 , Humanos , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Tálio/metabolismo
4.
Circ Genom Precis Med ; 14(4): e003289, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34309407

RESUMO

BACKGROUND: The proliferation of genetic profiling has revealed many associations between genetic variations and disease. However, large-scale phenotyping efforts in largely healthy populations, coupled with DNA sequencing, suggest variants currently annotated as pathogenic are more common in healthy populations than previously thought. In addition, novel and rare variants are frequently observed in genes associated with disease both in healthy individuals and those under suspicion of disease. This raises the question of whether these variants can be useful predictors of disease. To answer this question, we assessed the degree to which the presence of a variant in the cardiac potassium channel gene KCNH2 was diagnostically predictive for the autosomal dominant long QT syndrome. METHODS: We estimated the probability of a long QT diagnosis given the presence of each KCNH2 variant using Bayesian methods that incorporated variant features such as changes in variant function, protein structure, and in silico predictions. We call this estimate the posttest probability of disease. Our method was applied to over 4000 individuals heterozygous for 871 missense or in-frame insertion/deletion variants in KCNH2 and validated against a separate international cohort of 933 individuals heterozygous for 266 missense or in-frame insertion/deletion variants. RESULTS: Our method was well-calibrated for the observed fraction of heterozygotes diagnosed with long QT syndrome. Heuristically, we found that the innate diagnostic information one learns about a variant from 3-dimensional variant location, in vitro functional data, and in silico predictors is equivalent to the diagnostic information one learns about that same variant by clinically phenotyping 10 heterozygotes. Most importantly, these data can be obtained in the absence of any clinical observations. CONCLUSIONS: We show how variant-specific features can inform a prior probability of disease for rare variants even in the absence of clinically phenotyped heterozygotes.


Assuntos
Canal de Potássio ERG1 , Heterozigoto , Mutação INDEL , Síndrome do QT Longo , Mutação de Sentido Incorreto , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética
5.
Circ Res ; 128(3): 321-331, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33297863

RESUMO

RATIONALE: The class Ic antiarrhythmic drug flecainide prevents ventricular tachyarrhythmia in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT), a disease caused by hyperactive RyR2 (cardiac ryanodine receptor) mediated calcium (Ca) release. Although flecainide inhibits single RyR2 channels in vitro, reports have claimed that RyR2 inhibition by flecainide is not relevant for its mechanism of antiarrhythmic action and concluded that sodium channel block alone is responsible for flecainide's efficacy in CPVT. OBJECTIVE: To determine whether RyR2 block independently contributes to flecainide's efficacy for suppressing spontaneous sarcoplasmic reticulum Ca release and for preventing ventricular tachycardia in vivo. METHODS AND RESULTS: We synthesized N-methylated flecainide analogues (QX-flecainide and N-methyl flecainide) and showed that N-methylation reduces flecainide's inhibitory potency on RyR2 channels incorporated into artificial lipid bilayers. N-methylation did not alter flecainide's inhibitory activity on human cardiac sodium channels expressed in HEK293T cells. Antiarrhythmic efficacy was tested utilizing a Casq2 (cardiac calsequestrin) knockout (Casq2-/-) CPVT mouse model. In membrane-permeabilized Casq2-/- cardiomyocytes-lacking intact sarcolemma and devoid of sodium channel contribution-flecainide, but not its analogues, suppressed RyR2-mediated Ca release at clinically relevant concentrations. In voltage-clamped, intact Casq2-/- cardiomyocytes pretreated with tetrodotoxin to inhibit sodium channels and isolate the effect of flecainide on RyR2, flecainide significantly reduced the frequency of spontaneous sarcoplasmic reticulum Ca release, while QX-flecainide and N-methyl flecainide did not. In vivo, flecainide effectively suppressed catecholamine-induced ventricular tachyarrhythmias in Casq2-/- mice, whereas N-methyl flecainide had no significant effect on arrhythmia burden, despite comparable sodium channel block. CONCLUSIONS: Flecainide remains an effective inhibitor of RyR2-mediated arrhythmogenic Ca release even when cardiac sodium channels are blocked. In mice with CPVT, sodium channel block alone did not prevent ventricular tachycardia. Hence, RyR2 channel inhibition likely constitutes the principal mechanism of antiarrhythmic action of flecainide in CPVT.


Assuntos
Antiarrítmicos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Flecainida/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Retículo Sarcoplasmático/efeitos dos fármacos , Taquicardia Ventricular/prevenção & controle , Potenciais de Ação , Animais , Sinalização do Cálcio , Calsequestrina/genética , Calsequestrina/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Carneiro Doméstico , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
6.
Heart Rhythm ; 17(12): 2180-2189, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32522694

RESUMO

BACKGROUND: KCHN2 encodes the KV11.1 potassium channel responsible for IKr, a major repolarization current during the cardiomyocyte action potential. Variants in KCNH2 that lead to decreased IKr have been associated with long QT syndrome type 2 (LQT2). The mechanism of LQT2 is most often induced loss of KV11.1 trafficking to the cell surface. Accurately discriminating between variants with normal and abnormal trafficking would aid in understanding the deleterious nature of these variants; however, the volume of reported nonsynonymous KCNH2 variants precludes the use of conventional methods for functional study. OBJECTIVE: The purpose of this study was to report a high-throughput, multiplexed screening method for KCNH2 genetic variants capable of measuring the cell surface abundance of hundreds of missense variants in the resulting KV11.1 channel. METHODS: We developed a method to quantitate KV11.1 variant trafficking on a pilot region of 11 residues in the S5 helix. RESULTS: We generated trafficking scores for 220 of 231 missense variants in the pilot region. For 5 of 5 variants, high-throughput trafficking scores validated when tested in single variant flow cytometry and confocal microscopy experiments. We further explored these results with planar patch electrophysiology and found that loss-of-trafficking variants do not produce IKr. Conversely, but expectedly, some variants that traffic normally were still functionally compromised. CONCLUSION: We describe a new method for detecting KV11.1 trafficking-deficient variants in a multiplexed assay. This new method accurately generated trafficking data for variants in KV11.1 and is extendable both to all residues in KV11.1 and to other cell surface proteins.


Assuntos
DNA/genética , Canal de Potássio ERG1/genética , Síndrome do QT Longo/genética , Mutação , Miocárdio/patologia , Linhagem Celular , Análise Mutacional de DNA , Canal de Potássio ERG1/metabolismo , Humanos , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Miocárdio/metabolismo , Técnicas de Patch-Clamp
7.
J Clin Pharmacol ; 60(5): 648-659, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31829451

RESUMO

A decrease in the human ether-a-go-go-related gene (hERG/KCNH2)-related channel has been linked to intrauterine fetal death. The formation of cytochrome P450 (CYP) 3A-mediated progesterone metabolites, 6-beta-hydroxy-progesterone (6ß-OHP) and 16α-hydroxy-progesterone (16α-OHP), is variable among adults and differs from fetal metabolism. The primary objective of this study was to assess the potential for progesterone metabolites to inhibit hERG-related current and predict QTc intervals. Whole-cell voltage-clamp electrophysiology was performed on human embryonic kidney 293 cells stably expressing hERG exposed to progesterone or metabolites. Both 6ß-OHP and 16α-OHP positively shifted the voltage dependence of activation relative to vehicle from -4.0 ± 0.8 to -0.3 ± 0.8 mV, P < .01; and 1.0 ± 0.6 mV, P < .01, respectively. In addition, 6ß-OHP decreased maximal outward tail currents from 49.4 ± 4.9 to 32.5 ± 4.1 pA/pF, P < 0.01, and reduced the expression of fully glycosylated hERG by 42%. Healthy female subjects were administered progesterone 400 mg orally for 7 days, ibutilide 0.003 mg/kg was infused, and serial electrocardiograms and blood samples collected. Relationships between rate-corrected QT intervals (QTcI) with circulating hormones and metabolites were assessed. The 6ß-OHP and 16α-OHP metabolites were independent predictors of QTcI intervals prior to and following ibutilide administration. In conclusion, the progesterone metabolites formed via CYP3A cause inhibitory effects on hERG channels and predict QTcI intervals in healthy women pretreated with progesterone. Further study into maternal and fetal exposure to these metabolites and potential to prolong cardiac repolarization is warranted.

8.
Cells ; 3(2): 247-57, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24709960

RESUMO

Transient receptor potential canonical 6 (TRPC6) is a cation selective, DAG-regulated, Ca2+-permeable channel activated by the agonists of Gq-protein-coupled heptahelical receptors. Dysfunctions of TRPC6 are implicated in the pathogenesis of various cardiovascular and kidney conditions such as vasospasm and glomerulosclerosis. When stimulated by agonists of the histamine H1 receptor (H1R), TRPC6 activity decays to the baseline despite the continuous presence of the agonist. In this study, we examined whether H1R desensitization contributes to regulating the decay rate of TRPC6 activity upon receptor stimulation. We employed the HEK expression system and a biosensor allowing us to simultaneously detect the changes in intracellular diacylglycerol (DAG) and Ca2+ concentrations. We found that the histamine-induced DAG response was biphasic, in which a transient peak was followed by maintained elevated plateau, suggesting that desensitization of H1R takes place in the presence of histamine. The application of PKC inhibitor Gö6983 slowed the decay rate of intracellular DAG concentration. Activation of the mouse H1R mutant lacking a putative PKC phosphorylation site, Ser399, responsible for the receptor desensitization, resulted in a prolonged intracellular DAG increase and greater Mn2+ influx through the TRPC6 channel. Thus, our data support the hypothesis that PKC-dependent H1R phosphorylation leads to a reduced production of intracellular DAG that contributes to TRPC6 activity regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...